What is #-4 |5 - (6-7-8)| - |2-(3-6)|#?

1 Answer
Apr 8, 2016

#-61#

Explanation:

Always remember to follow B.E.D.M.A.S., which stands for:

B rackets
E xponents
D ivision
M ultiplication
A ddition
S ubtraction

#1#. Start by simplifying the brackets.

#-4|5-color(red)((6-7-8))|-|2-color(red)((3-6))|#

#=-4|5-color(red)((-9))|-|2-color(red)((-3))|#

#2#. Treat the bars as brackets and simplify.

#=-4color(darkorange)(|5-(-9)|)-color(darkorange)(|2-(-3)|)#

#=-4color(darkorange)(|5+9|)-color(darkorange)(|2+3|)#

#=-4color(darkorange)(|14|)-color(darkorange)(|5|)#

#3#. Since the numbers inside the bars are already positive, simply the expression by removing the bars.

#=-4(14)-5#

#4#. Multiply #-4# by #14#.

#=-56-5#

#5#. Solve.

#=color(green)(|bar(ul(color(white)(a/a)-61color(white)(a/a)|)))#