What is a general solution to the differential equation #dy/dx=(xy+2)/(x+1)#?

1 Answer
Jul 6, 2016

# y = (-2 + C e^(x))/(x+1)#

Explanation:

you can't separate this so we will use an Integrating Factor

#dy/dx=(xy+2)/(x+1)#

#dy/dx - (x)/(x+1) y =(2)/(x+1)#

the integrating factor I(x) is

#I(x) = exp( int dx qquad - (x)/(x+1) )#

# = exp( - int dx qquad (x+ 1 - 1)/(x+1) )#

# = exp( - int dx qquad 1 - 1/(x+1) )#

# = exp( - (x - ln (x+1) ) )#

# = exp( ln (x+1) - x )#

# = e^( ln (x+1)) e^(- x) = (x+1) e^(- x) #

so multiplying both sides by #I(x)#

#(x+1) e^(- x)* dy/dx - (x+1) e^(- x)* (x)/(x+1) y =(2)/(x+1) * (x+1) e^(- x)#

#implies color{red}{(x+1) e^(- x)}* color{blue}{dy/dx} - color{red}{ x e^(- x)} color{blue}{ y} =2e^(- x)#

#implies ((x+1) e^(- x) y)^prime =2e^(- x)#

So
#(x+1) e^(- x) y = 2 int dx qquad e^(- x)#

#(x+1) e^(- x) y = -2 e^(- x) + C#

# y = (-2 + C e^(x))/(x+1)#