# What is a solution that has more positive hydrogen ions than negative hydroxide ions?

Sep 7, 2016

$\text{Acidic}$

#### Explanation:

In neutral water at $298 \cdot K$, the following equilibrium operates:

$2 {H}_{2} O \left(l\right) r i g h t \le f t h a r p \infty n s {H}_{3} {O}^{+} + H {O}^{-}$

Careful measurement has established that at $298 \cdot K$, the ion product, [H_3O^+][""^(-)OH]=10^(-14).

If the solution is neutral then, [H_3O^+]=[""^(-)OH]=10^(-7)mol*L^-1.

If [H_3O^+]<[""^(-)OH], then the solution is alkaline, and if [H_3O^+]>[""^(-)OH], then the solution is acidic.

We can go a step farther than this, and define $p H$ and $p O H$. If we take $- {\log}_{10}$ of both sides of the equation,[H_3O^+][""^(-)OH]=10^(-14), we get -log_10[H_3O^+]-log_10[""^(-)OH]=-14.

If we define $p H = - {\log}_{10} \left[{H}_{3} {O}^{+}\right]$ and pOH=-log_10[""^(-)OH], then,

$p H + p O H = 14.$

From above, at neutrality, $p H = p O H = 7$; i.e. $\left[{H}_{3} {O}^{+}\right]$ and $\left[H {O}^{-}\right]$ are EQUAL.