What is a solution to the differential equation? : #dy/dx + (1-2x)/x^2*y = 1# when #y|_(x=1)=0#
1 Answer
# y = x^2(1 - e^( 1/x-1 )) #
Explanation:
We have:
# dy/dx + (1-2x)/x^2y = 1# and#y(1)=0#
We can use an integrating factor when we have a First Order Linear non-homogeneous Ordinary Differential Equation of the form;
# dy/dx + P(x)y=Q(x) #
So we compute and integrating factor,
# I = e^(int P(x) dx) #
# \ \ = exp(int \ (1-2x)/x^2 \ dx) #
# \ \ = exp( -2lnx -1/x ) #
# \ \ = e^( -lnx^2 -1/x ) #
# \ \ = e^( -lnx^2)e^( -1/x ) #
# \ \ = 1/x^2e^( -1/x ) #
And if we multiply the original DE by this Integrating Factor,
# 1/x^2e^( -1/x )dy/dx + 1/x^2e^( -1/x ) (1-2x)/x^2y = 1/x^2e^( -1/x ) #
# :. d/dx{ 1/x^2e^( -1/x ) y } = 1/x^2e^( -1/x ) #
This has transformed our initial ODE into a Separable ODE, so we can now "separate the variables" to get::
# 1/x^2e^( -1/x ) y = int \ 1/x^2e^( -1/x ) \ dx#
We can integrate, and we get:
# 1/x^2e^( -1/x ) y = e^( -1/x ) + C #
We now apply the initial conditions,
# 0 = e^( -1 ) + C => C = -e^( -1 )#
Leading to the Particular Solution is:
# 1/x^2e^( -1/x ) y = e^( -1/x ) -e^( -1 ) #
# :. y = x^2 - x^2e^( 1/x )e^( -1 ) #
# :. y = x^2 - x^2e^( 1/x-1 ) #
# :. y = x^2(1 - e^( 1/x-1 )) #