What is a solution to the differential equation #(1+y)dy/dx-4x=0#?

2 Answers
Jul 29, 2017

The solution is #y=+-sqrt(2x^2+1+C_1)-1#

Explanation:

#(1+y)dy/dx-4x=0#

This is a first order ordinary differential equation of the form

#N(y)dy=M(x)dx#

Therefore,

#(1+y)dy/dx=4x#

#(1+y)dy=4xdx#

Integrating both sides

#int(1+y)dy=int4xdx#

#y+y^2/2=4x^2/2+C#

#y^2/2+y=2x^2+C#

#y^2+2y=2x^2+C_1#

#y^2+2y+1=2x^2+1+C_1#

#(y+1)^2=2x^2+1+C_1#

#(y+1)=+-sqrt(2x^2+1+C_1)#

#y=+-sqrt(2x^2+1+C_1)-1#

Jul 29, 2017

See below.

Explanation:

#1/2(d/(dx))(1+y)^2-2(d/(dx))x^2=(d/dx)(1/2(1+y)^2-2x^2)=0#

then

#1/2(1+y)^2-2x^2=C# or

#(1+y)^2=4x^2+C_1# or

#1+y=pmsqrt(4x^2+C_1)# or

#y = -1pmsqrt(4x^2+C_1)#