What is a solution to the differential equation #dx/dt=t(x-2)# with x(0)=5?

1 Answer
Oct 30, 2016

# x = 2+3e^(1/2t^2) #

Explanation:

# dx/dt =t(x-2) #, so #x=x(t)#

This is a First Order separable DE, so we can "separate the variables" to get;

# int 1/(x-2)dx =int tdt #

We can easily integrate this to get:
# ln(x-2) =1/2t^2 + C #

Using the initial condition #x(0)=5# (or #x=5# when #t=0#) we get;
# ln(5-2) = 0 + C => C = ln3#

So, # ln(x-2) =1/2t^2 + ln3 #
# :. ln(x-2) -ln 3 = 1/2t^2 #
# :. ln((x-2)/3) = 1/2t^2 #
# :. (x-2)/3 = e^(1/2t^2) #
# :. x-2 = 3e^(1/2t^2) #
# :. x = 2+3e^(1/2t^2) #