What is a solution to the differential equation #dy/dx=2yx+yx^2#?

2 Answers
Jul 3, 2016

#=alpha e ^(x^2(1 + x/3) )#

Explanation:

#dy/dx=2yx+yx^2#

separate it, starting with....

#dy/dx=y(2x+x^2)#

#1/y dy/dx=(2x+x^2)#

you might recognise #1/y dy/dx# as #(ln y)'# and so the integration can be done pretty infomally, but if not....we can integrate both sides as follows.....starting again with the last equation:

#1/y dy/dx=(2x+x^2)#

#1/y dy=(2x+x^2) \ dx#

#int dy qquad 1/y = int dx qquad (2x+x^2)#

#ln y = x^2 + x^3/3 + C#

# = x^2(1 + x/3) + C#

#implies y = e^ (x^2(1 + x/3) + C) #

#= e^ (x^2(1 + x/3) )*e^(C) #

#=alpha e ^(x^2(1 + x/3) )#

where #alpha = const = e^C#

Jul 3, 2016

#y = C_0 e^{x^2 + 1/3 x^3}#

Explanation:

Grouping variables

#(dy)/y = (2x+x^2)dx#

integrating both sides

#log_e y = x^2+1/3x^3 + C#

Finally

#y = C_0 e^{x^2 + 1/3 x^3}#