Making #y = lambda x# and knowing that
#dy=lambda dx + x d lambda->(dy)/(dx)=lambda + x(d lambda)/(dx)#
we get at
#lambda + x (d lambda)/(dx)=1/(lambda+1)# or
#x (d lambda)/(dx)=-(lambda^2+lambda-1)/(lambda+1)# and now this differential equation is separable
#(dx)/x=-((lambda+1)d lambda)/(lambda^2+lambda-1)#
so
#(dx)/x = -((lambda+1)d lambda)/((lambda+1/2)^2-5/4)#
giving
#logx=-1/10((sqrt(5)+5)log(sqrt5-1-2lambda)-(sqrt(5)-5)log(sqrt5+1+2lambda))+C#
Now substituting,
#logx=-1/10((sqrt(5)+5)log(sqrt5-1-2y/x)-(sqrt(5)-5)log(sqrt5+1+2y/x))+C#
so the solution appears in implicit form
#G(y(x),x,C)=0#