It is
#cot²(x) + 1 = csc²(x)#
hence for #x=theta/2#
#cot(theta/2)=sqrt(csc^2(theta/2)-1)#
But
#csc(theta/2)=1/(sin(theta/2))=1/(sin(theta)/[2*cos(theta/2)])=
2*cos(theta/2)/(sin(theta))#
But #cos(2theta)=2cos^2theta-1=>
cos^2theta=1/2*(1+cos(2theta))#
Hence #cos(theta/2)=1/sqrt2*(1+costheta)=1/sqrt2*[1+sqrt(1-sintheta)]=>
cos(theta/2)=1/sqrt2*[1+sqrt(1-1/(csctheta))]#
And
#csc(theta/2)=2*cos(theta/2)/(sin(theta))=>
csc(theta/2)=2*[1/sqrt2*[1+sqrt(1-1/(csctheta))]]*csctheta=>
csc(theta/2)=sqrt2*csctheta*[1+sqrt(1-1/(csctheta))]#
Finally
#cot(theta/2)=sqrt([sqrt2*csctheta*(1+sqrt(1-1/(csctheta)))]^2-1)#