What is #int_(0)^(pi/2) cscxtanx dx #?

1 Answer
Jan 6, 2018

Diverges to #oo#.

Explanation:

First we can simplify:

#csc(x)tan(x) = 1/sin(x)*sin(x)/cos(x) = 1/cos(x) = sec(x)#

so we want to find #int sec(x)dx#. You might have that memorized, but if not the method I use is to multiply by a clever form of 1, #(sec(x)+tan(x))/(sec(x)+tan(x))#:

#int sec(x)dx = int sec(x)*(sec(x)+tan(x))/(sec(x)+tan(x))dx#

#=int (sec^2(x)+sec(x)tan(x))/(sec(x)+tan(x))dx#

Now let #u=sec(x)+tan(x)#, so

#du=(sec(x)tan(x)+sec^2(x))dx#, which matches the numerator of our integrand, so we can substitute and get:

#int 1/u du = ln(|u|)+C#

So the antiderivative we are looking for is: #ln(|sec(x)+tan(x)|)#.

Now we want to evaluate at #x=pi/2# and #x=0# but there's a problem! #sec(x)# is undefined at #x=pi/2#, so we have to do an improper integral:

#int_(0)^(pi/2)sec(x)dx #

#= lim_(b to (pi/2)^-)(ln(|sec(b)+tan(b)|)) - ln(|sec(0)+tan(0)|)#

#= lim_(b to (pi/2)^-)(ln(|sec(b)+tan(b)|)) - ln(|1|)#

#= lim_(b to (pi/2)^-)(ln(|sec(b)+tan(b)|))#

Since #sec(x)\rightarrow oo# as #x\rightarrow pi/2# from the left, and #tan(x)# does the same, the integral diverges because #ln(x)\rightarrow oo# as #x \rightarrow oo#.