What is #int_1^oo e^(-x^2) dx+int_-oo^0 e^(-x^2)dx#?

1 Answer
Mar 8, 2017

#int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx = 1.025629718 ... #

Explanation:

Let:

# I = int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx #

Then;

# I + int_(0)^(1) \ e^(-x^2) \ dx= int_(-oo)^(oo) \ e^(-x^2) \ dx #

Now the integral of #e^(-x^2)# does not have an elementary solution, but the RHS definte integral has a surprising result (discovered by Carl Guass) of #sqrt(pi)#, and for the LHS we use what is known as the error function #erf(x)#.

# erf(x) = 2/sqrt(pi) \ int_0^x e^(-t^2) \ dt #

So we can write:

# I + sqrt(pi)/2erf(1) = sqrt(pi) #
# :. I = sqrt(pi) - sqrt(pi)/2 \ erf(1) #

And the values of the error function can be looked up in tables:

# erf(1) = 0.842700792 ... #

So we have:

# :. I = 1.025629718 ... #