What is #int_1^oo e^(-x^2) dx+int_-oo^0 e^(-x^2)dx#?
1 Answer
Mar 8, 2017
#int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx = 1.025629718 ... #
Explanation:
Let:
# I = int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx #
Then;
# I + int_(0)^(1) \ e^(-x^2) \ dx= int_(-oo)^(oo) \ e^(-x^2) \ dx #
Now the integral of
# erf(x) = 2/sqrt(pi) \ int_0^x e^(-t^2) \ dt #
So we can write:
# I + sqrt(pi)/2erf(1) = sqrt(pi) #
# :. I = sqrt(pi) - sqrt(pi)/2 \ erf(1) #
And the values of the error function can be looked up in tables:
# erf(1) = 0.842700792 ... #
So we have:
# :. I = 1.025629718 ... #