What is #int (-x^3-2x-3 ) / (7x^4+ 5 x -1 )#?

1 Answer
Mar 1, 2016

#-.65697ln|x-.19785|-.01191ln|x+.95254|-.51407ln|.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)+const.#

Explanation:

What are the roots of the polynomial
#7x^4+5x-1#?

This is a depressed quartic function and I recommend this 2 sources (the first is to show work, the second for a fast solution) to resolve it:

http://www.sosmath.com/algebra/factor/fac12/fac12.html

http://www.mathportal.org/calculators/polynomials-solvers/polynomial-roots-calculator.php

From the root finder we get:

#x_1=.19785#
#x_2=-.95254#
#x_3=.37734+i.78462#
#x_4=.37734-i.78462#

For not to deal with complex numbers we have
#(x-x_3)(x-x_4)=x^2-.75468x+.75801#

The original function can be rewritten in partial fractions in this way
#(-x^3-2x-3)/(7x^4+5x-1)=A/(x-.19785)+B/(x+.95254)+(Cx+D)/(x^2-.75468x+.75801)#

For #x=0, -1, 1 and 2# we get

#A/-.19785+B/.95254+0*C+D/.75468=3#
#A/-1.19785+B/.04746+(-C+D)/5.51269=0#
#A/.80215+B/1.95254+(C+D)/1.00333=-6/11#
#A/1.80295+B/2.95254+(2C+D)/3.24865=-15/121#

Or

#[[-5.05433,1.04982,0,1.31924],[-.83483,21.07038,-.39798,.39798],[1.24665,.51215,.99668,.99668],[.55489,.33869,.61564,.30782]][[A],[B],[C],[D]]=[[3],[0],[-6/11],[-15/121]]#

Solving this system of variables we get

#A=-.65697#
#B=-.01191#
#C=.51407#
#D=-.23349#

So the original expression becomes

#-.65697int dx/(x-.19785)-.01191int dx/(x+.95254)+int (.51407x-.23349)/(x^2-.75468x+.75801)dx# [ #alpha# ]

Let's resolve the last part of the expression, the only one that poses a challenge
#int (.51407x-.23349)/(x^2-.75468x+.75801)dx=#

#(x-.37734)^2=x^2-.75468+.14239#
=> #x^2-.75468x+.75801=(x-.37734)^2+.61562#
#(x-.37734)=sqrt(.61562)tany=.78462tany#
#dx=.78462sec^2ydy#
How many units of #(x-.37734)# are there in the numerator?
#(.51407x-.23349)/(x-.37734)=.51407-.03951/(x-.37734)#

That's why now we are dealing with
#=.51407int (.78462tany*.78462cancel(sec^2y))/(.61562cancel(sec^2y))dy-.03951int (.78462cancel(sec^2y))/(.61562cancel(sec^2y)dy#
#=.51407int tanydy-.05036int dy#
#=-.51407ln |cosy|-.05036y#

#tany=(x-.37734)/.78462# => #siny=(x-.37734)/.78462cosy#
=>#sin^2y+cos^2y=1# => #((x^2-.75468x+.14239)/.61562+1)cos^2 y=1# => #cosy=.78462/sqrt(x^2-.75468x+.75801)#
#-> =-.51407 ln |.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)#

Therefore expression [ #alpha# ] becomes
#-.65697ln|x-.19785|-.01191ln|x+.95254|-.51407ln|.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)+const.#