What is #int1/(2+sqrtx)dx# using substitution u=sqrtx ?

1 Answer
Jun 16, 2017

# int \ 1/(2+sqrt(x)) \ dx = 2 sqrt(x)-4ln|2+sqrt(x)| + C#

Explanation:

Let:

# I = int \ 1/(2+sqrt(x)) \ dx #

If we perform the suggested change of variable then we have;

# u =sqrt(x) => (du)/dx = 1/(2sqrt(x)) = 1/(2u) #

Then performing the substitution we get:

# I = int \ 1/(2+u) \ 2u \ du #
# \ \ = 2 \ int \ u/(2+u) \ du #
# \ \ = 2 \ int \ (2+u-2)/(2+u) \ du #
# \ \ = 2 \ int \ 1-2/(2+u) \ du #

We can now integrate to get:

# I = 2 {u-2ln|2+u|} + C#
# \ \ = 2 u-4ln|2+u| + C#

Restoring the substitution we get:

# I = 2 sqrt(x)-4ln|2+sqrt(x)| + C#

Having shown this solution, however, I would have used the substitution:

# u =2+sqrt(x) => (du)/dx = 1/(2sqrt(x)) = 1/(2(u-2)) #

Then performing the substitution we get:

# I = int \ 1/u \ 2(u-2) \ du #
# \ \ = 2 \ int \ 1-2/u \ du #

We can now integrate to get:

# I = 2{ u - 2ln |u| } + C #
# \ \ = 2u - 4ln |u| + C #
# \ \ = 2(2+sqrt(x) ) - 4ln |2+sqrt(x) | + C #
# \ \ = 4+2sqrt(x) - 4ln |2+sqrt(x) | + C #
# \ \ = 2sqrt(x) - 4ln |2+sqrt(x) | + C_1 #, as above