What is #lim x->0# of #(sin4x)/(sin5x)#?

2 Answers
Oct 26, 2016

#4/5#

Explanation:

#(sin4x)/(sin5x)= 4/5(5x)/(4x)(sin4x)/(sin5x)=4/5((sin4x)/(4x))/((sin5x)/(5x))#

now

#lim_(x->0)(sin4x)/(sin5x)=lim_(x->0)4/5((sin4x)/(4x))/((sin5x)/(5x))=4/5#

Oct 26, 2016

# lim_(xrarr0)(sin4x)/(sin5x) = 4/5#

Explanation:

The limit is of the indeterminate form #0/0# so we can use L'Hôpital's rule as follows;

# lim_(xrarr0)(sin4x)/(sin5x) = lim_(xrarr0)(d/dxsin4x)/(d/dxsin5x)#
# :. lim_(xrarr0)(sin4x)/(sin5x) = lim_(xrarr0)(4cos4x)/(5cos5x)#
# :. lim_(xrarr0)(sin4x)/(sin5x) = 4/5lim_(xrarr0)(cos4x)/(cos5x)#

Then, as both #cos4xrarr1# and #cos5xrarr1# as #xrarr0# we have;

# lim_(xrarr0)(sin4x)/(sin5x) = 4/5#,