What is #\lim _ { x \rightarrow 0 } \frac { e ^ { 2 x } - e ^ { x } } { x }#?
1 Answer
# lim_(x rarr 0) (e^(2x)-e^x)/(x) = 1 #
Explanation:
Method 1 : Graphically
graph{(e^(2x)-e^x)/(x) [-8.594, 9.18, -1.39, 7.494]}
Although far from conclusive, it appears that:
# lim_(x rarr 0) (e^(2x)-e^x)/(x) = 1#
Method 2 : L'Hôpital's rule
The limit:
# lim_(x rarr 0) (e^(2x)-e^x)/(x) #
is of an indeterminate form
# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x)) #
And so applying L'Hôpital's rule we get:
# lim_(x rarr 0) (e^(2x)-e^x)/(x) = lim_(x rarr 0) (2e^(2x)-e^x)/(1)#
# " "= 2-1#
# " "= 1#
Method 3 - Power Series
The power series for
# e^x = 1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + ... #
And so we have:
# e^(2x) = 1 + 2x + (2x)^2/(2!) + (2x)^3/(3!) + (2x)^4/(4!) + ... #
Therefore;
# (e^(2x)-e^x)/(x) = { (1 + 2x + O(x^2)) - (1 + x + O(x^2)) } / x #
# " " = { 1 + 2x + O(x^2) - 1 - x + O(x^2) } / x #
# " " = { x + O(x^2) } / x #
# " " = 1 + O(x) #
And so:
# lim_(x rarr 0) (e^(2x)-e^x)/(x) = lim_(x rarr 0) (1 + O(x)) #
# " " = 1 #