What is #\lim _ { x \rightarrow 1^ { + } } \frac { x } { x - 1} - \frac { 1} { \ln ( x ) }#?

1 Answer
Jun 2, 2018

#1/2#

Explanation:

Writing
#(xln(x)-(x-1))/((x-1)*ln(x))#
Using the rules of L'Hosptal we get
#lim_(x to 1^+)(ln(x)/(ln(x)+(x-1)/x))#
and this is
#lim_{x to 1^+)((x*ln(x))/(xln(x)+x-1))#
#lim_(x to 1^+)(1+ln(x))/(ln(x)+2)=1/2#