What is #log_8(((root5(p))(root(9)q))/(r^2))#?

1 Answer
May 30, 2016

The solution depends on what the objective is!

One step in the solution takes you to:
#=>1/(log_10(8))[(log_10(p))/5+log_10(q)/9-2log_10(r)] #

The values of #p,q" and "r# are not given.

Explanation:

Demonstrating use of indices in loges.
Source numbers multiplies #-> # logs added
Source numbers divided #-> # logs subtracted

Conversion of log base into a more usable base
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:#" "root(5)(p) -> p^(1/5)#

Consider:#" "root(9)(q) -> q^(1/9)#

So we have:
#" "log_8((p^(1/5)q^(1/9))/r^2)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Breaking this down into steps")#

#color(blue)("Step 1")#
Divide becomes subtracting logs

#" "log_8((p^(1/5)q^(1/9))/r^2)" "->" "log_8(p^(1/5)q^(1/9))-log_8(r^2)#
'...........................................................

#color(blue)("Step 2")#
Multiply becomes adding logs

#" "[log_8(p^(1/5))+log_8(q^(1/9))]-log_8(r^2)"#

'............................................
#color(blue)("Step 3")#
Source number to a power; multiply the log by the index

#" "[log_8(p)/5+log_8(q)/9]-2log_8(r)"#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Step 4")#
Convert the log base, say, base 8 to base 10

Suppose we hade #log_8(a) = (log_10(a))/log_10(8)#

#=> " "[log_10(p)/(5log_10(8))+log_10(q)/(9log_10(8))]-(2log_10(r))/(log_10(8)#

#=>1/(log_10(8))[(log_10(p))/5+log_10(q)/9-2log_10(r)] #

#color(green)("It all depends on where you wish to go from this point")#

By the way: #1/log_10(8)~~1.107 # to 3 decimal places