What is #p(2)# if # p ( x ) = x ^ { 4} + 3x ^ { 3} - 6x ^ { 2} - 8x#?

1 Answer
Nov 6, 2017

See a solution process below:

Explanation:

To find #p(2)# substitute #color(red)(2)# for each occurrence of #color(red)(x)# in the function #p(x)# and calculate the result:

#p(color(red)(x)) = color(red)(x)^4 + 3color(red)(x)^3 - 6color(red)(x)^2 - 8color(red)(x)# becomes:

#p(color(red)(2)) = color(red)(2)^4 + (3 * color(red)(2)^3) - (6 * color(red)(2)^2) - (8 * color(red)(2))#

#p(color(red)(2)) = 16 + (3 * 8) - (6 * 4) - 16#

#p(color(red)(2)) = 16 + 24 - 24 - 16#

#p(color(red)(2)) = 0#