What is #root4( \frac { 16x ^ { 4} } { 81x ^ { - 8} } )#?

1 Answer
Nov 23, 2016

I found: #root(4)((16x^4)/(81x^-8))=2/3x^3#

Explanation:

You can solve it remembering that:
#2^4=2*2*2*2=16#
#3^4=3*3*3*3=81#
and
#x^-8=1/x^8# and also: #1/x^-8=x^8#
so you can write:
#root(4)(x^4/x^-8)=root(4)(x^4x^8)=root(4)(x^(4+8))=root(4)(x^12)#
remembering the fact that a root corresponds to a fractional exponent you get:
#root(4)(x^12)=x^(12*1/4)=x^3#
so at the end your original root will give you:
#root(4)((16x^4)/(81x^-8))=2/3x^3#