What is #sqrt24xx9sqrt3#?

2 Answers
Sep 22, 2015

Answer:

The answer is #54sqrt2#.

Explanation:

#sqrt24xx9sqrt3#

Simplify #sqrt24#.

#sqrt24=sqrt(2xx2xx2xx3)#

#sqrt24=sqrt(2^2xx2xx3)#

#sqrt(x^2)=x:##sqrt(2^2)=2#

#sqrt24=2sqrt(2xx3)=2sqrt6#

Rewrite the problem.

#2sqrt6xx9sqrt3#

Simplify.

#2xx9xxsqrt(3xx6)=#

#18sqrt(18)#

Simplify #sqrt(18)#.

#sqrt18=sqrt(2xx3xx3)=#

#sqrt18=sqrt(2xx3^2)=#

Rewrite the problem.

#sqrt18=3sqrt2#

Simplify.

#18xx3sqrt2=#

#54sqrt2#

It is #sqrt24*9*sqrt3=9*sqrt(3*2^3*3)=9*sqrt(2^2*3^2*2)=54sqrt2#