What is the angle between #<-1,0,6 ># and #< 2,-1,5 >#?

1 Answer
Apr 19, 2018

The angle is #=32.8^@#

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈-1,0,6〉.〈2,-1,5〉=-2+0+30=28#

The modulus of #vecA#= #∥〈-1,0,6〉∥=sqrt(1+0+36)=sqrt37#

The modulus of #vecB#= #∥〈2,-1,5〉∥=sqrt(4+1+25)=sqrt30#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=28/(sqrt37*sqrt30)=0.84#

#theta=arccos(0.84)=32.8^@#