What is the angle between #<-1,8,6 ># and #< -6,3,0>#?
1 Answer
Explanation:
The equation for the angle between two vectors is given by:
#cos(theta)=(veca*vecb)/(|veca|*|vecb|)# Where
#veca=< -1,8,6 ># and#vecb= < -6,3,0 >#
First we find the dot product of the two vectotrs:
#veca*vecb= < -1,8,6 > *< -6,3,0 >#
#=>(-1*-6)+(8*3)+(6*0)#
#=>6+24=30#
Next, we find the product of the magnitude of each vector:
#|veca|=sqrt((a_x)^2+(a_y)^2+(a_z)^2)#
#=>sqrt((-1)^2+(8)^2+(6)^2)#
#=>sqrt(1+64+36)#
#=>sqrt(101)#
#|vecb|=sqrt((b_x)^2+(b_y)^2+(b_z)^2)#
#=>sqrt((-6)^2+(3)^2+(0)^2)#
#=>sqrt(36+9+0)#
#=>sqrt(45)#
And
Revisiting our original equation, we can solve for
#theta=cos^-1((veca*vecb)/(|veca|*|vecb|))#
Substituting in our values found above:
#theta=cos^-1((veca*vecb)/(|veca|*|vecb|))#
#=>theta=cos^-1((30)/(sqrt(4545)))#
This comes out to
Explanation of equation:
We can derive the given equation using a geometric interpretation of the vectors.
Given vectors
By the law of cosines, given:
Applying this to our vector-made triangle:
#|veca-vecb|^2=|veca|^2+|vecb|^2-2|veca|*|vecb|cos(theta)#
Simplifying:
#=>(veca-vecb)*(veca-vecb)=(veca*veca)+(vecb*vecb)-2|veca|*vec|b|cos(theta)#
#=>cancel(veca^2)-2(veca*vecb)cancel(+vecb^2)=cancel(veca^2)+cancel(vecb^2)-2|veca|*vec|b|cos(theta)#
#=>-2(veca*vecb)=-2|veca|*vec|b|cos(theta)#
#=>(veca*vecb)=|veca|*vec|b|cos(theta)#
Solve for
#=>cos(theta)=(veca*vecb)/(|veca|*vec|b|)#