What is the angle between #<-1,8,8 > # and #<-1,7,3> #?

1 Answer

Angle
#theta=21.8036678^@#
#theta=21^@ 48' 13.2''#

Explanation:

Let the vector #v= -i+8j+8k#
Let the vector #w=-i+7j+3k#
Let #theta# be the angle between the vectors

Use the formula

#cos theta=(v*w)/(|\|v|\|" "|\|w|\|)#

#v*w=(-1)(-1)+8(7)+8(3)=1+56+24=81#

#|\|v|\|=sqrt((-1)^2+8^2+8^2)=sqrt(1+64+64)=sqrt129#

#|\|w|\|=sqrt((-1)^2+7^2+3^2)=sqrt(1+49+9)=sqrt59#

Let us continue

#cos theta=(v*w)/(|\|v|\|" "|\|w|\|)#

#cos theta=(81)/(sqrt129*sqrt59)#

#theta=cos^-1 ((81)/(sqrt129*sqrt59))#

#theta=21.8036678^@#
#theta=21^@ 48' 13.2''#

God bless....I hope the explanation is useful.