What is the angle between #<-2,5,-7 > # and #< 6,-4,5>#?

1 Answer
Oct 25, 2016

The angle is #87.8º#

Explanation:

Let the two vectors be #vecu=〈u_1,u_2,u_3〉#
and #vecv=〈v_1,v_2,v_3〉#

The angle betwwen the vectors is #theta#

Then by the definition of the dot product
#vecu.vecv=∣vecu∣∣vecv∣costheta#

where #∣vecu∣# and #∣vecv∣# are the magnitude ot the vectors

Therefore, #costheta=(vecu.vecv)/(∣vecu∣∣vecv∣)#

#vecu=〈-2,5,7〉#
#vecv=〈6,-4,5〉#

#vecu.vecv=u_1v_1+u_2v_2+u_3v_3=-12-20+35=3#

#∣vecu∣=sqrt(u_1^2+u_2^2+u_3^2)=sqrt(4+25+49)=sqrt78#
#∣vecv∣=sqrt(v_1^2+v_2^2+v_3^2)=sqrt(36+16+25)=sqrt77#

So #costheta=3/(sqrt78sqrt77)=3/77.5=0.039#

#theta=87.8º#