What is the angle between #<-2,7,-1> # and #<6,-1,4 >#?

1 Answer
Feb 9, 2017

The angle is #=115.5#º

Explanation:

The angle between #vecu# and #vecv# is given by the dot product definition.

#vecu.vecv=∥vecu∥*∥vecv∥costheta#

Where #theta# is the angle between #vecu# and #vecv#

The dot product is

#vecu.vecv=〈-2,7,-1〉.〈6,-1,4〉=-12-7-4=-23#

The modulus of #vecu#= #∥〈-2,7,-1〉∥=sqrt(4+49+1)=sqrt54#

The modulus of #vecv#= #∥〈6,-1,4〉∥=sqrt(36+1+16)=sqrt53#

So,

#costheta=(vecu.vecv)/(∥vecu∥*∥vecv∥)=-23/(sqrt54*sqrt53)=-0.43#

#theta=115.5#º