What is the angle between #<-3,2,0 > # and #<6,-9,8> #?

1 Answer
Jan 20, 2017

The angle is #=137.9#º

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈-3,2,0〉.〈6,-9,8〉=-18-18+0=-36#

The modulus of #vecA#= #∥〈-3,2,0〉∥=sqrt(9+4+0)=sqrt13#

The modulus of #vecB#= #∥〈6,-9,8〉∥=sqrt(36+81+64)=sqrt181#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-36/(sqrt13*sqrt181)=-0.742#

#theta=137.9#º