What is the angle between #<-3,2,6 > # and #<6,1,-5> #?
1 Answer
I got
Let
#\mathbf(veca cdot vecb = ||veca||cdot||vecb||costheta)# where:
#vecacdotvecb# is the dot product between#veca# and#vecb# .#||veca||# is the norm of#veca# .#theta# is the angle between#veca# and#vecb# .
The dot product in
#\mathbf(vecacdotvecb)#
#= << a_1,a_2, . . . , a_n >> cdot << b_1,b_2, . . . , b_n >>#
#= \mathbf(a_1b_1 + a_2b_2 + . . . + a_nb_n)#
And the norm in
#\mathbf(||veca||)#
#= sqrt(vecacdotveca#
#= sqrt(a_1a_1 + a_2a_2 + . . . + a_n a_n)#
#= \mathbf(sqrt(a_1^2 + a_2^2 + . . . + a_n^2))#
So, we evaluate the angle as follows:
#costheta = (veca cdot vecb)/(||veca||cdot||vecb||)#
#color(green)(theta = arccos((veca cdot vecb)/(||veca||cdot||vecb||)))#
First, we should find the dot product between
#color(green)(vecacdotvecb)#
#= << -3,2,6 >> cdot << 6,1,-5 >>#
#= -3*6 + 2*1 + 6*-5#
#= -18 + 2 - 30#
#= color(green)(-46)#
Then, we should find each norm.
#color(green)(||veca||)#
#= sqrt(veca cdot veca)#
#= sqrt(<< -3,2,6 >>cdot<< -3,2,6 >>)#
#= sqrt(-3*-3 + 2*2 + 6*6)#
#= sqrt(9 + 4 + 36)#
#= color(green)(7)#
#color(green)(||vecb||)#
#= sqrt(vecb cdot vecb)#
#= sqrt(<< 6,1,-5 >>cdot<< 6,1,-5 >>)#
#= sqrt(6*6 + 1*1 + -5*-5)#
#= sqrt(36 + 1 + 25)#
#= color(green)(sqrt62)#
Finally, let's get the angle.
#color(blue)(theta) = arccos((veca cdot vecb)/(||veca||cdot||vecb||))#
#= arccos((-46)/(7sqrt62))#
#~~# #color(blue)("2.56 rad")# or about#color(blue)(146.6^@)# .
And you can see that from using Wolfram Alpha on this question as well.