What is the angle between #<-3,5,6> # and #<-1,9,-3>#?

2 Answers
Mar 5, 2016

#cos theta = (<-3,5,6> * <-1,9,-3>)/((sqrt((-3)^2+5^2+6^2)) sqrt((-1)^2+9^2+(-3)^2))#
#cos theta=((-3)(-1)+(5)(9)+(6)(-3))/((sqrt70)(sqrt91)) =30/sqrt6370 ->theta = cos^-1 (30/sqrt6370) = 67.92^@#

Explanation:

Find the dot product of the vectors then divide by the magnitude of each. Finally take the cosine inverse to find #theta#

Mar 5, 2016

Use the definition of a dot product to find that:

#theta=67.1^o# or #1.17# radians

Explanation:

The dot product is a very convenient tool that allows you to find the angle between any two vectors. It is given by:

#vec a*vec b=|\vec a|*|\vec b|*costheta#

Where #vec a*vec b# represents the dot product between #vec a# and #vec b#, given by:

#vec a*vec b=(a_1*b_1)+(a_2*b_2)+(a_3*b_3)+...#

Note: The dot product will always result in a scalar value.

#|vec a|# and #|vec b|# are the magnitudes of #vec a# and #vec b#, respectively. They are also scalar values, calculated by using:

#|vec a| = (a_1^2+a_2^2+a_3^2+...)^(1/2)#

With this information, the angle between the vectors <−3,5,6> and <−1,9,−3> can be found:

Step 1: Calculate the dot product
#vec a*vec b=(a_1*b_1)+(a_2*b_2)+(a_3*b_3)+...#
#vec a*vec b=(-3*-1)+(5*9)+(6*-3)#
#vec a*vec b=3+45+(-18)#
#vec a*vec b=30#

Step 2: Calculate the magnitude of each vector
#|vec a| = (a_1^2+a_2^2+a_3^2+...)^(1/2)#
#|vec a| = ((-3)^2+(5)^2+(6)^2)^(1/2)#
#|vec a| = (9+25+36)^(1/2)#
#|vec a| = (70)^(1/2)#
#|vec a| = 8.367#

Following the same procedure for #|vec b|# gives:
#|vec b|=9.220#

#|vec a|*|vec b|# then is: #8.367*9.220=77.143#

Step 3: Solve for #theta#:

#vec a*vec b=|\vec a|*|\vec b|*costheta#
#30=77.143*costheta#
#costheta=30/77.143#
#costheta=0.389#
#theta=cos^-1(0.389)#
#theta=67.1^o# or #1.17# radians