What is the angle between #<-3,5,6> # and #<9,-1,8>#?

1 Answer
Oct 28, 2016

The angle is #46.2º#

Explanation:

The angle is obtained by using the definition of the dot product
#vecu.vecv=∣vecu∣*∣vecv∣costheta#
where #theta# is the angle between the vectors #(vecu,vecv)#

So #costheta=(vecu.vecv)/(∣vecu∣*∣vecv∣)#

Here #vecu=〈-3,5,6〉#

and #vecv=〈-9,-1,8〉#

The dot product is given by #vecu.vecv=〈u_1,u_2,u_3〉〈v_1,v_2,v_3〉=u_1v_1+u_2v_2+u_3v_3#
So #vecu.vecv=27-5+48=70#

#∣vecu∣=sqrt(u_1^2+u_2^2+u_3^2)=sqrt(9+25+36)=sqrt70#

#∣vecv∣=sqrt(v_1^2+v_2^2+v_3^2)=sqrt(81+1+64)=sqrt146#

So #costheta=70/(sqrt70.sqrt146)=#
#theta=46.2º#