What is the angle between #<-4,0,1 > # and #<-6,-1,0> #?

1 Answer
Jul 6, 2017

The angle is #=16.9º#

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈-4,0,1〉.〈-6,-1,0〉=24+0+0=24#

The modulus of #vecA#= #∥〈-4,0,1〉∥=sqrt(16+0+1)=sqrt17#

The modulus of #vecB#= #∥〈-6,-1,0〉∥=sqrt(36+1)=sqrt37#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=24/(sqrt17*sqrt37)=0.96#

#theta=16.9#º