What is the angle between #< 4 , 1 , -2 > # and # < -9 , -3 , 2 > #?

1 Answer
Mar 12, 2018

The angle is #=165.4^@#

Explanation:

The angle between #2#vectors, #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈4,1,-2〉.〈-9,-3,2〉=(4)*(-9)+(1)*(-3)+(-2)*(2)=-43#

The modulus of #vecA#= #∥〈4,1,-2〉∥=sqrt(16+1+4)=sqrt21#

The modulus of #vecB#= #∥〈-9,-3,2〉∥=sqrt(81+9+4)=sqrt94#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-43/(sqrt21*sqrt94)=-0.97#

#theta=arccos(-0.97)=165.4^@#