What is the angle between #<4 , 7 , -1 > # and # < -3 , 6 , 3 > #?

1 Answer
Nov 23, 2017

The angle is #=63.3^@#

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈4,7,-1〉.〈-3,6,3〉=-12+42-3=27#

The modulus of #vecA#= #∥〈4,7,-1〉∥=sqrt(16+49+1)=sqrt66#

The modulus of #vecB#= #∥〈-3,6,3〉∥=sqrt(9+36+9)=sqrt54#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=27/(sqrt66*sqrt54)=0.45#

#theta=63.3^@#