What is the angle between #<-4,8,0> # and #< 1,0,-2>#?

1 Answer
Mar 11, 2018

# 78^o \ # to nearest degree

Explanation:

The angle, #theta#, between vectors #bb(ul a)# and #bb(ul b)# is given by:

# bb(ul a) * bb(ul b) = |bb(ul a)| \ |bb(ul b)| \ cos theta #

So if we define:

# bb(ul a) = <<-4,8,0>> #
# bb(ul b) = <<1,0,-2>> #

Then we calculate the scalar (or dot product):

# bb(ul a) * bb(ul b) = <<-4,8,0>> * <<1,0,-2>> #
# \ \ \ \ \ \ \ \ \ = (-4)(1) + (8)(0) + (0)(-2) #
# \ \ \ \ \ \ \ \ \ = -4 #

And we calculate the norms:

# |bb(ul a)| = sqrt((-4)^2+8^2+0^2) #
# \ \ \ \ \ = sqrt(16+64+0) #
# \ \ \ \ \ = sqrt(80) #

# |bb(ul b)| = sqrt(1^2+0^2+(-2)^2) #
# \ \ \ \ \ = sqrt(1+0+4) #
# \ \ \ \ \ = sqrt(5) #

So using # bb(ul a) * bb(ul b) = |bb(ul a)| \ |bb(ul b)| \ cos theta # we can write:

# -4 = sqrt(80)sqrt(5) \ cos theta #

# :. cos theta = -4/sqrt(400) #
# \ \ \ \ \ \ \ \ \ \ \ \ = -1/5 #

# :. theta = arccos( -1/5 ) #
# \ \ \ \ \ \ = 78.46304 ... #
# \ \ \ \ \ \ = 78^o \ # to nearest degree