What is the angle between #<4,8,2 ># and #< 0,-7,1>#?

1 Answer
Dec 11, 2016

The angle is #=146.4#º

Explanation:

You have 2 vectors, #vecu# and #vecv#

The angle is given by the dot product definition

#vecu.vecv=∥vecu∥*∥vecv∥costheta#

where #theta=# angle between the 2 vectors.

If #vecu=〈u_1,u_2,u_3〉# and #vecv=〈v_1,v_2,v_3〉#

The dot product is

#vecu.vecv=〈u_1,u_2,u_3〉.〈v_1,v_2,v_3〉#

#=u_1v_1+u_2v_2+u_3v_3#

Here, the dot product is

#〈4,8,2〉.〈0,-7,1〉=4*0-7*8+2*1=-54#

The modulus of a vector is #∥vecu∥=sqrt(u_1^2+u_2^2+u_3^2)#

The modulus of #vecu# is #∥vecu∥=∥〈4,8,2〉∥=sqrt(16+64+4)=sqrt84#

The modulus of #vecv# is #∥vecu∥=∥〈0,-7,1〉∥=sqrt(0+49+1)=sqrt50#

So,

#costheta=(vecu.vecv)/(∥vecu∥*∥vecv∥)=-54/(sqrt84*sqrt50)=-0.83#

#theta=146.4#º