What is the angle between #<5,4,3 > # and #< 1,-5,-7 >#?

1 Answer
Jan 31, 2017

The angle is #126#º

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈5,4,3〉.〈1,-5,-7〉=5-20-21=-36#

The modulus of #vecA#= #∥〈5,4,3〉∥=sqrt(25+16+9)=sqrt50#

The modulus of #vecB#= #∥〈1,-5,-7〉∥=sqrt(1+25+49)=sqrt75#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-36/(sqrt50*sqrt75)=-0.588#

#theta=126#º