What is the angle between #<5,8,2 ># and #< 2,1,4 >#?

1 Answer
May 17, 2018

The angle is #=54.0^@#

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈5,8,2〉.〈2,1,4〉=10+8+8=26#

The modulus of #vecA#= #∥〈5,8,2〉∥=sqrt(25+64+4)=sqrt93#

The modulus of #vecB#= #∥〈2,1,4〉∥=sqrt(4+1+16)=sqrt21#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=26/(sqrt93*sqrt21)=0.588#

#theta=arccos(0.588)=54.0^@#