What is the angle between #<6,-2,9> # and # < -2,1,-8 > #?

1 Answer
Mar 20, 2018

The angle is #=160.3^@#

Explanation:

The angle between #2# vectors, #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈6,-2,9〉.〈-2,1,-8〉=-12-2-72=-86#

The modulus of #vecA#= #∥〈6,-2,9〉∥=sqrt(36+4+81)=sqrt121=11#

The modulus of #vecB#= #∥〈-2,1,-8〉∥=sqrt(4+1+64)=sqrt69#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-86/(11*sqrt69)=-0.94#

#theta=arccos(-0.94)=160.3^@#