What is the angle between #<7 , -2 , 7 > # and # < 2 , 5 , 1 > #?

1 Answer
Dec 2, 2016

The angle is #=78.5#º

Explanation:

We use the dot product definition,

#veca.vecb=∥veca∥*∥vecb∥*cos(veca,vecb)#

Here, #veca=〈7,-2,7〉# and #vecb=〈2,5,1〉#

The dot product is

#veca.vecb=〈7,-2,7〉.〈2,5,1〉=14-10+7=11#

The modulus of #veca=∥〈7,-2,7〉∥=sqrt(49+4+49)=sqrt102#

The modulus of #vecb=∥〈2,5,1〉∥=sqrt(4+25+1)=sqrt30#

We can now calculate the angle,

#cos(veca,vecb)=(veca.vecb)/(∥veca∥*∥vecb∥)=11/(sqrt102*sqrt30)=0.2#

The angle is #(veca,vecb)=78.5#º