What is the angle between #<8,7,6> # and #<-1,6,1>#?

1 Answer
Jan 18, 2017

The angle is #57.9#º

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈8,7,6〉.〈-1,6,1〉=-8+42+6=40#

The modulus of #vecA#= #∥〈8,7,6〉∥=sqrt(64+49+36)=sqrt149#

The modulus of #vecB#= #∥〈-1,6,1〉∥=sqrt(1+36+1)=sqrt38#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=40/(sqrt38*sqrt149)=0.53#

#theta=57.9#º