What is the angle between #<-9 , 2 , 2 > # and # < 5 , 8 , 3 > #?

1 Answer
Apr 29, 2018

The angle is #=103.6^@# anticlockwise from the x-axis

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈-9,2,2〉.〈5,8,3〉=-45+16+6=-22#

The modulus of #vecA#= #∥〈-9,2,2〉∥=sqrt(81+4+4)=sqrt89#

The modulus of #vecC#= #∥〈5,8,3〉∥=sqrt(25+64+9)=sqrt98#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-22/(sqrt89*sqrt98)=-0.24#

#theta=arccos(-0.24)=103.6^@# anticlockwise from the x-axis