What is the angle between #<9,-5,1 > # and #< -7,4,2 >#?

1 Answer
Jul 19, 2018

The angle is #=160.5^@#

Explanation:

The angle between #2# vectors #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈9,-5,1〉.〈-7,4,2〉=-63-20+2=-81#

The modulus of #vecA#= #∥〈9,-5,1〉∥=sqrt(81+25+1)=sqrt107#

The modulus of #vecB#= #∥〈-7,4,2〉∥=sqrt(49+16+4)=sqrt69#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-81/(sqrt107*sqrt69)=-0.943#

#theta=arccos(-0.943)=160.5^@#