What is the antiderivative of #F(x) = x/ sqrt (x^2 + 1)#?

2 Answers
May 31, 2018

#sqrt(x^2+1)+C#

Explanation:

Writing your integral in the form

#1/2*int2x/sqrt(x^2+1)dx#

Now we Substitute

#x^2+1=t#
then

#2xdx=dt#

and our integral is
#1/2int dt/sqrt(t)#
#1/2*int t^{-1/2}dt=t^(1/2)+C#
So we obtain

#sqrt(x^2+1)+C#

May 31, 2018

Note: #color(blue)(int(f'(x))/sqrt(f(x))dx=2sqrt(f(x))+c#

#I=intx/sqrt(x^2+1)dx=1/2int(2x)/sqrt(x^2+1)dx=1/2xx2sqrt(x^2+1)+c#

#:.I=sqrt(x^2+1)+c#

Explanation:

#II^(nd) Method :#

#I=intx/sqrt(x^2+1)dx#

Let,

#sqrt(x^2+1)=u=>x^2+1=u^2=>2xdx=2udu=>xdx=udu#

So,

#I=intu/sqrt(u^2)du=intu/udu=int1du=u+c#

Subst. #u=sqrt(x^2+1)#

#=>I=sqrt(x^2+1)+c#