What is the antiderivative of #(sec(x)^2)(tan(x)^2)/((sec(x)^2-(R^2))# where R is a constant?
1 Answer
Explanation:
For simplicity's sake, we will use the notation
We have:
#I=int(sec^2xtan^2x)/(sec^2x-R^2)dx#
In the denominator, let
#I=int(sec^2xtan^2x)/(tan^2x+1-R^2)dx#
Let
#I=intu^2/(u^2+1-R^2)du#
Rewriting the numerator:
#I=int((u^2+1-R^2)-1+R^2)/(u^2+1-R^2)du#
#I=int(1+(R^2-1)/(u^2+1-R^2))du#
Integrating
#I=u+(R^2-1)int1/(u^2+1-R^2)du#
We will now perform partial fraction decomposition on the remaining integrand:
#1/(u^2+1-R^2)=1/(u^2-(R^2-1))=1/((u+sqrt(R^2-1))(u-sqrt(R^2-1)))#
So we will use the decomposition:
#1/((u+sqrt(R^2-1))(u-sqrt(R^2-1)))=A/(u+sqrt(R^2-1))+B/(u-sqrt(R^2-1))#
#1=A(u-sqrt(R^2-1))+B(u+sqrt(R^2-1))#
Letting
#1=A(sqrt(R^2-1)-sqrt(R^2-1))+B(sqrt(R^2-1)+sqrt(R^2-1))#
#1=B(2sqrt(R^2-1))#
#B=1/(2sqrt(R^2-1))#
Letting
#1=A(-sqrt(R^2-1)-sqrt(R^2-1))+B(-sqrt(R^2-1)+sqrt(R^2-1))#
#1=A(-2sqrt(R^2-1))#
#A=(-1)/(2sqrt(R^2-1))#
Then:
#1/(u^2+1-R^2)=(-1)/(2sqrt(R^2-1)(u+sqrt(R^2-1)))+1/(2sqrt(R^2-1)(u-sqrt(R^2-1)))#
Returning to the integral:
#I=u-1/(2sqrt(R^2-1))int1/(u+sqrt(R^2-1))du+1/(2sqrt(R^2-1))int1/(u-sqrt(R^2-1))du#
These are both deceptively simple integrals, since
#I=u-1/(2sqrt(R^2-1))lnabs(u+sqrt(R^2-1))+1/(2sqrt(R^2-1))lnabs(u-sqrt(R^2+1))#
From
#I=tanx-(lnabs(tanx+sqrt(R^2-1))+lnabs(tanx-sqrt(R^2-1)))/(2sqrt(R^2-1))#
Using
#I=tanx-lnabs(tan^2x-(R^2-1))/(2sqrt(R^2-1))#
Using
#I=tanx-lnabs(sec^2x-R^2)/(2sqrt(R^2-1))+C#