What is the approach of this question?

enter image source here

2 Answers
Oct 14, 2017

1) #a^2/p^2#

Explanation:

This is my first attempt and may be more complicated than necessary, but:

Try keeping the problem fairly symmetric...

Let #m# be the mean of #alpha, beta, gamma, delta# and #h# half of the common difference.

Then:

#{ (alpha = m - 3h), (beta = m-h), (gamma = m+h), (delta = m+3h) :}#

and:

#ax^2+bx+c = a(x-alpha)(x-beta)#

#color(white)(ax^2+bx+c) = a(x-m+3h)(x-m+h)#

#color(white)(ax^2+bx+c) = ax^2-2(m-2h)ax+(m^2-4hm+3h^2)a#

So:

#{ (b = -2(m-2h)a), (c = m^2-4hm+3h^2) :}#

and:

#D_1 = b^2-4ac#

#color(white)(D_1) = 4a^2((m-2h)^2-(m^2-4hm+3h^2))#

#color(white)(D_1) = 4a^2((m^2-4hm+4h^2)-(m^2-4hm+3h^2))#

#color(white)(D_1) = 4a^2h^2#

We can then simply replace #h# with #-h# and #a# with #p# to find:

#D_2 = 4p^2h^2#

So:

#D_1/D_2 = (4a^2h^2)/(4p^2h^2) = a^2/p^2#

Oct 14, 2017

1) #a^2/p^2#

Explanation:

Here's a simpler method...

#ax^2+bx+c = a(x-alpha)(x-beta)#

#color(white)(ax^2+bx+c) = a(x^2-(alpha+beta)x+alphabeta)#

#color(white)(ax^2+bx+c) = ax^2-(alpha+beta)ax+alphabetaa#

So:

#D_1 = b^2-4ac#

#color(white)(D_1) = a^2((alpha+beta)^2-4alphabeta)#

#color(white)(D_1) = a^2(alpha^2+2alphabeta+beta^2-4alphabeta)#

#color(white)(D_1) = a^2(alpha^2-2alphabeta+beta^2)#

#color(white)(D_1) = a^2(alpha-beta)^2#

Similarly:

#D_2 = p^2(gamma-delta)^2#

But #alpha, beta, gamma, delta# are in arithmetic progression. So:

#gamma-delta = beta-alpha#

and:

#D_1/D_2 = (a^2(alpha-beta)^2)/(p^2(gamma-delta)^2) = a^2/p^2#