What is the approach of this question?
2 Answers
1)
Explanation:
This is my first attempt and may be more complicated than necessary, but:
Try keeping the problem fairly symmetric...
Let
Then:
#{ (alpha = m - 3h), (beta = m-h), (gamma = m+h), (delta = m+3h) :}#
and:
#ax^2+bx+c = a(x-alpha)(x-beta)#
#color(white)(ax^2+bx+c) = a(x-m+3h)(x-m+h)#
#color(white)(ax^2+bx+c) = ax^2-2(m-2h)ax+(m^2-4hm+3h^2)a#
So:
#{ (b = -2(m-2h)a), (c = m^2-4hm+3h^2) :}#
and:
#D_1 = b^2-4ac#
#color(white)(D_1) = 4a^2((m-2h)^2-(m^2-4hm+3h^2))#
#color(white)(D_1) = 4a^2((m^2-4hm+4h^2)-(m^2-4hm+3h^2))#
#color(white)(D_1) = 4a^2h^2#
We can then simply replace
#D_2 = 4p^2h^2#
So:
#D_1/D_2 = (4a^2h^2)/(4p^2h^2) = a^2/p^2#
1)
Explanation:
Here's a simpler method...
#ax^2+bx+c = a(x-alpha)(x-beta)#
#color(white)(ax^2+bx+c) = a(x^2-(alpha+beta)x+alphabeta)#
#color(white)(ax^2+bx+c) = ax^2-(alpha+beta)ax+alphabetaa#
So:
#D_1 = b^2-4ac#
#color(white)(D_1) = a^2((alpha+beta)^2-4alphabeta)#
#color(white)(D_1) = a^2(alpha^2+2alphabeta+beta^2-4alphabeta)#
#color(white)(D_1) = a^2(alpha^2-2alphabeta+beta^2)#
#color(white)(D_1) = a^2(alpha-beta)^2#
Similarly:
#D_2 = p^2(gamma-delta)^2#
But
#gamma-delta = beta-alpha#
and:
#D_1/D_2 = (a^2(alpha-beta)^2)/(p^2(gamma-delta)^2) = a^2/p^2#