What is the arc length of #f(x)=lnx # in the interval #[1,5]#?
1 Answer
Mar 7, 2018
The arc length is
Explanation:
#f(x)=lnx#
#f'(x)=1/x#
Arc length is given by:
#L=int_1^5sqrt(1+1/x^2)dx#
Rearrange:
#L=int_1^5sqrt(x^2+1)/xdx#
Apply the substitution
#L=intsectheta/tantheta*sec^2thetad theta#
Rewrite as:
#L=intcsctheta*(tan^2theta+1)d theta#
Hence
#L=int(secthetatantheta+csctheta)d theta#
Integrate term by term:
#L=[sectheta-ln|csctheta+cottheta|]#
Reverse the substitution:
#L=[sqrt(1+x^2)-ln|(1+sqrt(1+x^2))/x|]_1^5#
Insert the limits of integration:
#L=sqrt26-sqrt2+ln5-ln((1+sqrt26)/(1+sqrt2))#