What is the arc length of #r(t) = (t^2, 1-t^2, -t)# in the interval #[0,1]#?

1 Answer
May 26, 2016

#s =1.81161 #

Explanation:

Considering #r(t)=(x(t),y(t),z(t))# we know that
#ds^2=dx^2+dy^2+dz^2# or
#((ds)/(dt))^2=((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2#
Also that
#s=int_0^1 ((ds)/(dt))dt = int_0^1 (sqrt(((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2))dt# so
#s=int_0^1 ((ds)/(dt))dt = int_0^1 (sqrt((2t)^2+(-2t)^2+(-1)²))dt#
then
#s = int_0^1(sqrt(8 t^2+1))dt #
#s = 1/8 (4 t sqrt(1 + 8 t^2) + sqrt(2)times"arcsinh"(2 sqrt(2) t))|_0^1 = 1.81161#