What is the arclength of #f(x)=(x-3)-ln(x/2)# on #x in [2,3]#?

1 Answer
May 26, 2018

#-sqrt(5)+sqrt(13)+arcsinh(3)/sqrt(2)-arcsinh(5)/sqrt(2)+log(2)+log(3)+log(-1+sqrt(5))-log(-2+sqrt(13)#

Explanation:

  • using that
    #L(a,b)=int_a^bsqrt(1+(f'(x))^2)dx#
    we have for
    #f(x)=(x-3)-ln(x/2)#
    #f'(x)=1-2/x*(1/2)=1-1/x#
    and we must solve
    #int_2^3sqrt(1+(1-1/x)^2)dx#
    To computing this integral is compligated, and i will give only a result for the indefinite integral

#(sqrt((2x^2-2x+1)/x^2)*x*(-sqrt(2)*arcsinh(2x-1)+2sqrt(2x^2-2x+1)+2actanh((x-1)/sqrt(2x^2-2x+1))))/(2*sqrt(2x^2-2x+1))#