What is the arclength of #f(x)=x-sqrt(e^x-2lnx)# on #x in [1,2]#?
1 Answer
Mar 3, 2017
Explanation:
The arc length of the curve of
#L=int_a^bsqrt(1+(f'(x))^2)dx#
Here,
#f'(x)=1-1/2(e^x-2lnx)^(-1/2)(e^x-2/x)#
#color(white)(f'(x))=1-(xe^x-2)/(2xsqrt(e^x-2lnx))#
Then the arc length is given by
#L=int_1^2sqrt(1+(1-(xe^x-2)/(2xsqrt(e^x-2lnx)))^2)dxapprox1.0630#