What is the arclength of #(t^2lnt,t-lnt)# on #t in [1,2]#?
1 Answer
Aug 21, 2017
#f(t)=(t^2lnt,t-lnt)#
#f'(t)=(2tlnt+t,t-1/t)#
For a parametric function
#s=int_a^bsqrt((dx/dt)^2+(dy/dt)^2)dt#
Thus, we have an arc length of:
#color(blue)(s=int_1^2sqrt((2tlnt+t)^2+(t-1/t)^2)dtapprox2.8914#
Find the approximation using a calculator or a website like WolframAlpha.