What is the derivative of #5^(x/6)#? Calculus Differentiating Exponential Functions Differentiating Exponential Functions with Other Bases 1 Answer A. S. Adikesavan May 13, 2016 #=((log 5)/6)5^(x/6)# Explanation: Use #a^(kx)=e^(x k log a)# and #(e^(bx))'=be^(bx)#. #(5^(x/6))'# #=(e^(((log 5)/6)x))'# #=((log 5)/6)(e^(((log 5)/6)x))# #=((log 5)/6)5^(x/6)# Answer link Related questions How do I find #f'(x)# for #f(x)=5^x# ? How do I find #f'(x)# for #f(x)=3^-x# ? How do I find #f'(x)# for #f(x)=x^2*10^(2x)# ? How do I find #f'(x)# for #f(x)=4^sqrt(x)# ? What is the derivative of #f(x)=b^x# ? What is the derivative of 10^x? How do you find the derivative of #x^(2x)#? How do you find the derivative of #f(x)=pi^cosx#? How do you find the derivative of #y=(sinx)^(x^3)#? How do you find the derivative of #y=ln(1+e^(2x))#? See all questions in Differentiating Exponential Functions with Other Bases Impact of this question 1434 views around the world You can reuse this answer Creative Commons License